• Chia sẻ bài viết Phân tích dữ liệu người học sẽ giúp sinh viên thành công hơn lên Linkhay
  • Giúp ictnews sửa lỗi

Phân tích dữ liệu người học sẽ giúp sinh viên thành công hơn

ictnews
Cùng với đề xuất ứng dụng phân tích dữ liệu người học để hỗ trợ sinh viên, Giáo sư Gregor Kennedy đến từ ĐHMelbourne cho hay, tại Việt Nam, phương pháp phân tích dữ liệu người học có thể áp dụng ở các trường đại học đang theo đuổi mô hình giáo dục 4.0.

Phó Giám đốc Sở GD&ĐT TP.HCM Phạm Ngọc Thanh (trái) và Giáo sư Gregor Kennedy tại hội thảo InSITE 2017.

Đòn bẩy từ phân tích Dữ liệu lớn

Hội thảo về Khoa học cung cấp thông tin InSITE 2017 vừa được Đại học RMIT Việt Nam cùng Viện Khoa học về cung cấp thông tin (ISI) tổ chức tại TP.HCM.

Trong khuôn khổ hội thảo này, bài diễn thuyết chủ đề “Xác định nguy cơ hay hỗ trợ thành công? Vai trò của phân tích hành vi người học” của GS Gregor Kennedy - Thừa hành Phó chủ tịch Hội đồng đại học kiêm Giám đốc Trung tâm Nghiên cứu giáo dục bậc cao thuộc ĐH Melbourne, đã nhận được sự quan tâm của hơn 150 chuyên gia giáo dục trong nước và quốc tế.

Theo GS Gregor, để chuẩn bị nhân lực chất lượng cao đáp ứng yêu cầu cấp thiết của Cách mạng công nghiệp 4.0, hiện nhiều trường đại học hàng đầu trên thế giới đang ứng dụng những phương pháp dạy và học mới lấy sinh viên làm trọng tâm nhằm giúp sinh viên thành công trong quá trình học.

Một trong những xu hướng quan trọng là việc phân tích học thuật tổng quát và phân tích dữ liệu người học. Cùng với sự lên ngôi của big data (Dữ liệu lớn), việc phân tích sẽ ngày càng xác đáng giúp xây dựng được các chương trình học thích hợp, đồng thời góp phần nhiều hơn vào sự thành công của người học.

“Triển vọng quan trọng của phân tích dữ liệu người học là chỉ ra được những hình mẫu ẩn chứa trong quá trình học của sinh viên để từ đó có thể chủ động hỗ trợ giúp sinh viên thành công”, GS Gregor nói.

Minh chứng cho nhận định của mình, GS Gregor đã chia sẻ 3 ví dụ ứng dụng phân tích dữ liệu người học được thực hiện tại ĐH Melbourne gồm: nhận thức và tương tác; lớp học trực tuyến mở quy mô lớn; và mô phỏng kỹ năng phẫu thuật vỏ não. Trong cả 3 ví dụ, từ phân tích cách thiết kế chương trình học cũng như cách học của sinh viên, Giáo sư Gregor đã chỉ ra được những kết quả hết sức tích cực.

Cụ thể, trong ví dụ thứ nhất, GS Gregor chia sẻ rằng những người làm công tác giáo dục có thể dùng việc phân tích để tìm ra mẫu hành vi khác nhau của sinh viên khi các em hoàn thành các nhiệm vụ nhỏ trong quá trình học. Những mẫu hành vi khác nhau sẽ gợi ý về cách học và phương pháp tiếp cận khác nhau của sinh viên, cũng như nhận thức khác nhau khi làm bài tập, từ đó cho ra kết quả học tập và mức độ thành công khác nhau.

Ở ví dụ thứ hai phân tích từ các lớp học trực tuyến mở quy mô lớn, GS Gregor nhấn mạnh: “Cách chúng ta - những người làm công tác giáo dục, thiết kế và sắp xếp chương trình học ở cấp vĩ mô thật sự có thể ảnh hưởng đến phương pháp học của sinh viên, đó là xem và ôn bài”.

Phương pháp học từ mô phỏng ở ví dụ cuối đã nhận được phản hồi tích cực của 24 sinh viên y khoa tham gia thực nghiệm trong cuộc phỏng vấn ngay sau buổi thử nghiệm.

Sử dụng công nghệ mới và phân tích dữ liệu người học để có thể hỗ trợ cho từng sinh viên là xu hướng hđang được ứng dụng rộng rãi các trường đại học tiên tiến trên thế giới (Ảnh minh họa trích từ bài thuyết trình của Giáo sư Gregor)

Từ những ví dụ trên, GS Gregor kêu gọi những người làm trong lĩnh vực giáo dục hãy dùng phân tích dữ liệu người học vào mục đích cao hơn là hỗ trợ để sinh viên thành công trong việc học, chứ không dừng lại ở việc giúp sinh viên đang có nguy cơ không theo kịp với chương trình học như hiện nay.

Phương pháp hữu ích giúp phát lộ năng lực tiềm ẩn của sinh viên

Trong bài thuyết trình của mình, GS Gregor cũng khẳng định, phân tích dữ liệu người học là phương pháp cực kỳ hữu dụng đối với giáo viên, những người soạn thảo chương trình học và các nhà nghiên cứu giáo dục, vì giúp hé lộ năng lực tiềm ẩn, khả năng và mặt mạnh của sinh viên thay vì tập trung vào xác định khiếm khuyết hay điểm yếu ở các em.

Phương pháp phân tích này có thể giúp các trường có được dữ liệu khổng lồ của từng sinh viên, có thể hiểu được cách mỗi sinh viên thực hiện nhiệm vụ học tập như thế nào, đồng thời mở rộng chương trình giảng dạy, và giúp những người làm công tác giáo dục thấu hiểu sự nhận thức và quá trình học của sinh viên, từ đó giúp các em có quá trình và phương thức học tập tốt hơn, để có được kết quả học tập tốt và từ đó thành công hơn.

Đáng chú ý, GS Gregor cho hay, tại Việt Nam, phương pháp phân tích dữ liệu người học có thể áp dụng ở các trường đại học đang theo đuổi mô hình giáo dục 4.0. “Áp dụng phân tích dữ liệu người học sẽ góp phần nâng cao chất lượng dạy và học ở bậc đại học, đào tạo ra nguồn nhân lực chất lượng cao, đồng thời thể hiện được sự sáng tạo và thích ứng của các trường đồng hành cùng cuộc Cách mạng công nghiệp 4.0”, GS Gregor nói.

Phân tích dữ liệu người học là việc đánh giá, thu thập, phân tích và báo cáo dữ liệu về người học và bối cảnh học nhằm hiểu và tối ưu hóa việc học; cũng như môi trường nơi người học và người dạy cùng tương tác với nhau.

Vân Anh

Tương tác trực tiếp với ICTnews trên Facebook

Hội thảo InSITE lần đầu được tổ chức tại Việt Nam hướng tới cách mạng công nghiệp 4.0
ICTnews - Được đưa về Việt Nam đúng thời điểm chuyển tiếp quan trọng trong phát triển, thu hút công nghệ số và khoa học cung cấp thông tin trong...
Cách mạng công nghiệp 4.0 đòi hỏi phải có sự đổi mới đột phá về cách dạy
ICTnews - Theo PGS.TS Huỳnh Quyết Thắng, Phó Hiệu trưởng ĐH Bách khoa Hà Nội, trong xu thế của cách mạng công nghiệp 4.0, các trường đại học...

Video đang được xem nhiều

  • Chia sẻ bài viết Phân tích dữ liệu người học sẽ giúp sinh viên thành công hơn lên Linkhay
  • Giúp ictnews sửa lỗi

Bài viết chưa có bình luận nào.

lên đầu trang